¿De dónde sale la Derivada?

La derivada es la herramienta fundamental del Cálculo Diferencial y se puede ver de dos maneras:


Interpretación Geométrica

Consiste en encontrar la pendiente de la recta tangente a la gráfica en cualquier punto.

Las rectas secantes tienden mientras nuestro rango sea más pequeños volverse una recta tangente.

image06


Derivada

Su fórmula original y oficial es la siguiente:

Captura de pantalla 2017-03-30 a las 8.51.09 p.m.


Ecuación de la Recta Tangente

Después de encontrar la derivada, podemos ya encontrar una ecuación que nos muestra cual es la recta tanguee te en cualquier punto de la función:

Captura de pantalla 2017-04-14 a las 2.56.45 p.m..png

Esto describe la recta tangente


Notaciones de la Derivada

Hay muchas formas de describir como son las derivadas, desde las de Newton o las demás:

Captura de pantalla 2017-04-13 a las 2.41.36 p.m..png

Las mil y un derivadas (Formas del Operador Derivada)


Interpretación Física

Una derivada es un ritmo de cambio

image05


Teorema del Punto Medio

Dentro de un intervalo (a,b) existe un punto C tal que su recta tangente tiene la misma pendiente que la recta que une ambos límites del intervalo.

image09

 

 

btn

Funciones

 

«Cuando asignamos un valor a X la variable Y adquiere un único valor,  se dice que tal relación es una función».

image02

En donde:

  • Y dependiente
  • X independiente
  • Y es función de X
  • Y depende de X
  • Y es el nombre de la variable

Dominio de la Función

image30

Conjunto de valores que adquiere la variable independiente (X), para los cuales la dependiente (Y) es un número real.

Por lo tanto que una función esté definida en los Reales significa que al asignar un valor a X la variable dependiente (Y)  no debe presentar ninguna de las siguientes.

Indeterminación

  • 0/0
  • K/0
  • Infinito
  • Raíz negativa

Intervalo

Contradominio, Rango y Recorrido, Imagen

image30

Es el conjunto de valores que adquiere la función.

Es muy fácil poder despejar la variable Y y calcular su dominio.


Valuar una Función

Para el estudio de una función es necesario conocer qué valor toma la función para un determinado valores de X ya sea # o literal.

Funciones Explícitas

En las funciones explícitas se pueden obtener las imágenes de x por simple sustitución.

image14

Funciones Implícitas

En las funciones implícitas no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.

image09


Operaciones

El dominio de estas operaciones es la intersección del dominio de f(x) y g(x)

Excepto en el cociente donde es la intersección de ambos y donde g(x) ≠0  

image06

image39


Prueba de la Línea Vertical

image12

Una curva en el plano xy es la gráfica de una función de x si y sólo si ninguna línea vertical se interseca con la curva más de una vez.


Funciones Famosas

image33

image42

image36

image07

image28

image29

image40

image17

image43

image10


Traslación de Funciones

funciones1funciones2

Captura de pantalla 2017-02-15 a las 8.37.57 a.m..png

Translación

image31

Alargamiento y Reflexión

image27


Simetría

simetria1

simetria2


Funciones Trascendental

En las funciones trascendentes la variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría.

Exponenciales

image16

  • Los puntos (0,1) y (1,a) siempre existen
  • Crece si a > 1
  • Decrece si a < 1

image37

image34

Logarítmicas

La función logarítmica en base a es la función inversa de la exponencial en base a.
image45

image20


Trigonométricas

La funciones trigonométricas asocian a cada número real, x, el valor de la razón trigonométrica del ángulo cuya medida en radianes es x.

image04


Función Recíproca

La función recíproca o inversa de f , son como:

image04

image24

image13

Para obtener la ecuación hay que despejar a la variable x


Función Inversa

Captura de pantalla 2017-04-13 a las 5.57.29 p.m..png

La función recíproca o inversa de es otra función  son como:

image04

image44


Funciones Racionales

image01

Dominio: Son todos los reales menos cuando g(x) = 0

Raíces: Son cuando h(x)=0


Asíntotas

funciones3

funciones4

funciones5

 

 

 

 btn

Espacios Vectoriales

fuentes-2

 

ApuntesDe

Dale Click

 

 

 

Hay una pregunta muy común que se suelen hacer a los que estudiamos estas materias:

¿Qué es un vector?

  • Es una flecha en el espacio que casualmente tiene una bonita forma matemática.
  • Es un conjunto de números que casualmente tienen una bonita visualización gráfica.
  • Es algo más…

…. Para que me entiendas, usaremos algo que no es un vector para mucha gente pero tiene varias características interesantes:

Funciones

captura-de-pantalla-2017-02-26-a-las-7-23-55-p-m

Las puedes sumas COMO A LOS VECTORES

captura-de-pantalla-2017-02-26-a-las-7-24-48-p-m

Y MULTIPLICAR

captura-de-pantalla-2017-02-26-a-las-7-26-03-p-m

INCLUSO PUEDES TENER TRANSFORMACIONES LINEALES

Es más incluso puedes expresar a una derivada como una matriz:

Captura de pantalla 2017-02-26 a las 7.43.19 p.m..png

Así que a la pregunta:

¿Qué es un vector?

La mejor respuesta que tengo es: Cualquier objeto matemático en el que exista la noción de añadir estos objetos e multiplicarlos por un escalar.

Eso es un vector.

Captura de pantalla 2017-02-26 a las 7.47.15 p.m..png

Esto son vectores

Campo

Definición Formal: Un campo K es un conjunto (no vacío) con dos operaciones cerradas, suma y producto, tales que para cualquier 3 elementos se cumplen las siguientes propiedades:

con

Leyes


Campos Conocidos

040

Tal vez me recuerdes en campos como:

Algunos campos que quizá conozcas:

  • Racionales
  • Reales
  • Complejos
  • Cualquier aritmética modular cuya n sea prima

Algunos conjuntos que «parecen» ser campos pero no lo son son:

  • Los enteros
  • Naturales

Propiedades Básicas de un Campo

  • Los neutros son únicos
  • Los inversos son únicos
  • Si x+z=y+z, entonces x=y
  • Si xz=yz y z no es 0 entonces
  • Cualquier elemento por el cero del campo, es si mismo.
  • El inverso aditivo de un inverso aditivo de un elemento es ese elemento.
  • Si XY= 0, o X o Y es cero.
  • El inverso multiplicativo de un inverso multiplicativo de un elemento es ese elemento.

Podemos definir que un Espacio Vectorial tiene que cumplir las siguientes características:

propiedades


Espacio Vectorial

Es más podemos definir un Espacio Vectorial sobre un Campo K cualquiera, como un conjunto no vacío en el que existe algo parecido a sumar, (una operación que recibe dos vectores y te regresa un vector) y multiplicar por un escalar (es decir una operación tal que recibe un vector y un escalar y regresa un vector).

Espacio Vectorial: Cualquier conjunto que obedezca estas normas.

Captura de pantalla 2017-02-26 a las 7.49.39 p.m..png

Cortesía de 3Blue1Brown


SubEspacio Vectorial

«Es un subconjunto de un espacio vectorial en la que la suma y el producto por escalares de sus elementos siempre pertenezcan a ese mismo subconjunto»

Que W sea un subespecie vectorial de V quiere decir que W es un espacio vectorial con respecto a K con las operaciones restringidas a W.

Si W no es el conjunto vacío podemos decir que:

  • La suma de cualesquiera dos elementos de W esta en W.
  • La multiplicación de  un escalar con cualquier elemento de W continua estando en W.

O simplificando todo en una ecuación:

Captura de pantalla 2017-04-06 a las 8.54.28 a.m.

Así entonces para probar que algo es un subespacio vectorial hay que bien o probar que la suma y el producto por escalares se mantiene en W o probar la proposición de arriba, como tu quieras.


Propiedades de los SubEspacios

  • El subconjunto en el que solo esta el cero vector siempre será un subespacio.
  • V es subespacio vectorial de si mismo.
  • La intersección de dos subespacios vectoriales es un subespacio.
  • El conjunto de todos los elementos de la suma de 2 subespacios vectoriales es un subespacio vectorial.

SubEspacios Generados

Un subespacio o espacio generado de un montón de vectores es el espacio vectorial mas pequeño que contiene a todos esos vectores.

O también se puede ver como el conjunto de todas las combinaciones lineales que se puede hacer con estos vectores.

Captura de pantalla 2017-04-17 a las 9.43.20 a.m.

Forma 1

Captura de pantalla 2017-04-17 a las 2.12.40 p.m..png

Forma 2

Otra definición de este concepto se puede tener con estas dos ideas:Captura de pantalla 2017-04-17 a las 1.51.59 p.m.

Con estas condiciones aseguras que subespacio que estas creando es el mas pequeño posible.

Propiedades:

  • El Subespacio generado es único
  • El Subespacio del vacío es el cero vector
  • El Subespacio del Subespacio es el primer Subespacio.
  • Si cierto subespacio generado genera al espacio vectorial original, lo seguirá haciendo si le añades cualquier otro vector.

Ejemplos:

Captura de pantalla 2017-04-17 a las 2.37.55 p.m.


Encontrar si son Linealmente Independientes o no

Antes que nada, si, se que no, no encontré ninguna otro titulo que fuera lo suficientemente corto para expresarlo de otra manera.

Aquí la idea es general: Dado un Conjunto de Vectores ¿Son Linealmente Independientes esos vectores, o de otra forma, son Dependientes?

Para encontrar la respuesta solo hay un camino:

Ver si que exista una combinación lineal que de el vector cero implica (osea obliga a que pase) a que tus escalares sean cero.

Graficamente podemos verlo como:

Captura de pantalla 2017-04-19 a las 9.35.47 a.m.

Dame ese sistema

Captura de pantalla 2017-04-19 a las 9.44.47 a.m.

Dime ¿Esta es la única solución?

Tips:

  • Dado un sistema de ecuaciones homogéneo si tiene mas incógnitas que ecuaciones el sistema tiene muchas soluciones y por lo tanto el sistema asociado es dependiente.
  • Si su determinante es diferente de cero entonces solo tiene la solución trivial y por lo tanto son independiente el sistema asociado.

 

Propiedades Independencia Lineal:

  • Si cierto conjunto de Vectores son Linealmente Independientes, entonces no importa si le quitas un vector al conjunto, seguirá siendo Linealmente Independientes
  • Si cierto conjunto de Vector es contienen al cero vector es imposible que sean linealmente independientes.


Base de un Espacio Vectorial

Sea un Espacio Vectorial V, entonces podemos tener un conjunto de vectores de esa V que llamamos Base.

Podemos decir que un Conjunto de Vectores de V es base si y solo si:

  • Generan a V
  • Son Linealmente Independientes

U otra definición bonita sería:

«Con el Conjunto de Vector Base es el mínimo conjunto en Cardinalidad con el que es posible escribir cualquier vector de V» 

Captura de pantalla 2017-04-20 a las 9.25.43 a.m.

Propiedades:

  • Todas las bases tiene un la misma cardinalidad, digo, esto es obvio porque la dimensión esta bien definida, es decir es única.

Ejemplos:

Por ejemplo podemos saber que con este conjunto de vectores en R2, podemos crear cualquier vector en 2D

Captura de pantalla 2017-04-20 a las 9.32.14 a.m.

Los Clásicos «i» y «j»

Captura de pantalla 2017-04-20 a las 9.32.19 a.m.

Pero no son únicos, mira :0

Dimensión:

Podemos decir que la dimensión de V es la cantidad mínima de vectores que tendrá una Base que genera a V, osea, que la dimensión es la cantidad de vectores canónicos.


Teoremas Muy Importante:

Sea:

Captura de pantalla 2017-04-24 a las 9.47.40 a.m.

Los siguientes enunciados son equivalentes:

  • A es invertible
  • F1, F2, F3 … Fn generan a K^n
  • C1, C2, C3 … Fn generan a K^n
  • F1, F2, F3 … Fn son linealmente independientes
  • C1, C2, C3 … Fn son linealmente independientes
  • B = {F1, F2, …, Fn} son base de K^n
  • B = {C1, C2, …, Cn} son base de K^n

 

Sea n=dim V

Entonces los siguientes enunciados son equivalentes:

  • v1, v2, … vn  generan a V
  • v1, v2, …vn son linealmente independientes
  • B = {v1, v2, v3, … vn} es una base de V

 

 


Depurando para llegar a una Base

Supongamos que tenemos un conjunto de vectores con el que podemos generar un Espacio Vectorial, pero la cantidad de vectores en ese conjunto es mayor de la dimensión del Espacio Vectorial, es decir que hay «vectores de sobra».

Para podemos depurar aplicamos el siguiente algoritmo:

  1. Si es que la cardinalidad el conjunto es mayor a la dimensión de V
  2. Encontrar el Vector que es Combinación Lineal
  3. Eliminarlo
  4. Repite a 1

 

Podemos aplicar Gauss Jordan también, con esto, lo que podemos hacer es:

Generar la matriz que se forma de intentar encontrar el cero vector con todos ellos.

 

 

Sistemas d

 

Sistema de Ecuaciones – Gauss Jordan

fuentes-2.png

Este articulo esta basado en este documento, si quieren ponerse técnicos, tomen palomitas disfruten de muchos, MUCHOS tecnicismos:

Captura de pantalla 2017-02-19 a las 12.25.59 a.m..png

Denme click para verlo

Podemos usar las matrices y álgebra lineal para encontrar las soluciones de un sistema de ecuaciones lineales dentro de cualquier campo (eso quiere decir que podemos ocuparla incluso para resolver sistemas en el campo de los complejos o el campo de los números modulo n)

¿Mi sistema se puede resolver? (Prerequsisitos)

Este es muy obvio pero mejor lo digo, TODAS las ecuaciones debe ser lineales, es decir estar escritas de la forma:

multi.png

Sistema de Ecuaciones

Matriz Ampliada

Llamamos a lo que acabo de dibujar una «matriz ampliada» y la podemos notar en dos partes:

filas


Tipos de Soluciones

Recordemos antes que nada sobre estas ecuaciones, cada una de ellas representa algo en el espacio y podemos «solucionarlas» al dibujarlas en el espacio:

Y podemos separar nuestras soluciones en 3 amplias zonas:

Sistemas Consistentes

sistemas

Podemos tener primeramente sistemas consistentes, es decir que tienen mínimo una solución.

Es decir que las 3 rectas se interesectan MÍNIMO en un punto.

Además algo muy interesante es que todo sistema homogéneo, osea que sus coeficientes independientes valgan cero es consistente. Donde la solución mas obvia es que A, B y C valgan CERO.

matriz1

Así tenemos dos opciones:

  • Tocan en un punto: Que es lo «normal» y lo esperado
  • Son paralelas.

Este caso es muy especial , pues nos dice que el sistema esta dado por ecuaciones que son múltiplos de la otra o otra forma de verlo es que esta dado por vectores linealmente dependientes, así que de forma numérica cuando tengamos este caso llegamos a algo que siempre es verdad, a una tautología. Te muestro como se ve:

sistema2

Estos sistemas dan cosas raras…

Es decir, ese sistema tiene infinitas soluciones.

Para saber si un sistema es dependiente, por ejemplo si hablamos en dos dimensiones basta con ver que una tiene que ser múltiplo de la otra.

Sistemas No Consistentes

sistemas-2

Estos son los feos.

Ocurren cuando llegamos una contradicción, como este estilo:

matriz2


Operaciones Elementales

Para lograr solucionar el sistema se usa lo que se conoce como operaciones elementales, las operaciones elementales son operaciones en las que NO se afectan la solución de la Matriz.

1.- SWAP: Intercambio de Filas / Columnas

real

Podemos si queremos (aunque no se en que momento quisiéramos) expresar esta operación como una «matriz elemental»

Donde es casi la identidad, pero solo hacemos el swap entre las filas deseadas.

Captura de pantalla 2017-03-01 a las 9.11.43 a.m..png

2.-SCALE: Filas / Columnas por un escalar (n no debe ser 0)

captura-de-pantalla-2017-02-08-a-las-2-19-43-p-m

Podemos si queremos (aunque no se en que momento quisiéramos) expresar esta operación como una «matriz elemental»

Donde es casi la identidad, pero es k veces la identidad en la fila deseada.

captura-de-pantalla-2017-03-01-a-las-8-58-06-a-m

3.- PIVOT: Suma  Filas / Columnas y producto por otra

4

Y a esta también la podemos poder como una matriz elemental, esta es igual que la identidad, pero en la coordenada Y,X (NO x,y) esta el numero que queremos.

Captura de pantalla 2017-03-01 a las 9.24.59 a.m..png

Podemos unir las 2 ultimas operaciones y así quedarnos con 2 operaciones:

5

Swap y Pivot


Eliminación Gaussiana

Objetivo: Pasar de una Matriz «normal» a la forma «Escalonada por Filas»

matrices

Para ser Escalonada por Filas

Estas no tienen porque ser matrices cuadradas, pero tienen que cumplir con las siguientes características:

  • Para toda fila, si existe un elemento distinto de cero (pivote), entonces para todos los elementos anteriores de la fila deben ser cero y este elemento (pivote) debe ser uno.
  • Los pivotes deben aparecer de forma escalonada.
  • Si una fila no tiene pivotes entonces toda esa fila debe ser nula.
  • Si una fila no tiene pivotes (osea que sea nula) entonces todas las de abajo no pueden tener pivotes.
pivote2

Estas NO lo son

pivote1

Estas sí que lo son

¿Y cómo hago eso? Usando Pivotes.

Pivote: Son los óvalos, se llaman pivotes porque nos vamos a sujetar de ellos y vamos a buscar hacerlos uno y a todo lo demás de esa fila/columna debe buscar hacerse cero.

La Definición Formal: Un pivote es primer elemento de una fila distinto de cero y si o si tiene que ser un uno.

Algoritmo:

Gauss.gif

Resumen

  1. Inicias en el primer elemento.
  2. Convierte ese elemento a uno (usando la operación escalar)
  3. Usas ese uno que acabas de crear (usando la operación pivot) para hacer a toda a parte de abajo de la columna sea cero.
  4. Te mueves a la siguiente columna y bajas un elemento el columna y repites desde el paso uno.

Código

Soy un estudiante de sistemas computacionales, así que la manera más fácil para mi de entender algo es viendo código, así que te muestro.

Palomitas-2.png


Gauss Jordan

Objetivo

Nuestro objetivo es usando las operaciones elementales encontrar una forma de pasar nuestro matriz ampliada a esta forma:

11

Esta es la Matriz (ampliada) a la que queremos llegar

12

Que representa esto

De una manera más formal es llevar a nuestra matriz a una matriz escalonada reducida:

Decimos que una matriz esta de esta manera cuando ademas de lo arriba, para cualquier pivote toda esa columna (sin contarlo a el mismo) es nulo.

redox.png

Estos si son matrices escalonadas reducidas

Algoritmo en si:

  1. Nos ubicamos en una fila y vemos un elemento
  2. Si ese elemento cero:
    1. Entonces encárgate de buscar en los elementos de abajo de esa columna el primer elemento que no sea cero, y cambia la fila y ve al paso 3.1.
    2. Si no encuentras colócate en la siguiente columna de la misma fila en la que estabas y regresa al paso 1.
  3. Si no es cero, tenemos nuestro pivote:
    1. Dividir toda la fila entre ese numero para que el elemento sea uno.
    2. Hay que encargarnos de hacer toda esa columna (menos ese elemento) sea cero.
  4. Una vez que acabes, colócate en la siguiente fila, en el lugar de la columna en la que estabas mas uno y regresa al paso 1

Código

Soy un estudiante de sistemas computacionales, así que la manera más fácil para mi de entender algo es viendo código, así que te muestro.

Palomitas.png


Tipos de Sistemas

Hay también otra característica de la que ya hemos hablado antes, la dependencia e independencia lineal, un tema bastante difícil, pero también muy importante, y es que las ecuaciones también pueden serlo, veamos:

Sistemas Independientes

Son aquellos que NO contienen ecuaciones dependientes. Y por lo tanto tiene máximo una solución.

Sistemas Dependientes

Son aquellos que SI contienen  (incluso si no son todas) ecuaciones dependientes.

Bajo esta clasificación existen muchos ejemplo erróneos, así que apoyando de imágenes de la Fundación WhyU podemos llegar a ver sus características:

  • Un sistema Dependiente  de 2 ecuaciones es fácil de ver, ya que ambas tiene que ser o bien la misma o múltiplos de la misma:
  • Un sistema Dependiente  de más de 2 ecuaciones no tiene porque ser múltiplo para ser dependiente, mas bien hay que buscar que una sea una combinación lineal de las otras (o de algunas otras):

Captura de pantalla 2017-02-25 a las 11.24.27 p.m..png

  • Un sistema Dependiente  NO tiene porque tener soluciones infinitas:

captura-de-pantalla-2017-02-25-a-las-11-27-46-p-m

  • Un sistema Dependiente  PUEDE no tener solución:

Captura de pantalla 2017-02-25 a las 11.30.13 p.m..png

Podemos usar Gauss Jordan para saber si un sistema es dependiente.


Ejemplos:

Los mejores ejemplos de estos temas los he encontrado viendo esta serie, de verdad, si saben ingles, vean este video, no se van a arrepentir.

Fuentes.png

Da click, no te vas a arrepentir