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1. Series alternantes

Definición 1.1. Sea {an} una sucesión. Decimos que la serie

∞∑
n=1

an es alternante si an = (−1)nbn o an =

(−1)n+1bn donde bn ≥ 0. Entonces, vemos que los términos de la serie estarán alternados en su signo, ya sea
que comiencen con el primer término positivo o negativo.

Teorema 1.2 (Criterio de series alternantes). Sea

∞∑
n=1

an una serie alternante, donde an = (−1)nbn o

an = (−1)n+1bn y bn ≥ 0 para toda n ∈ N. Si:

i) ĺım
n→∞

bn = 0, y

ii) {bn} es una sucesión decreciente, es decir, bn ≥ bn+1 para n suficientemente grande,

entonces

∞∑
n=1

an converge.

Demostración. Como {bn} es decreciente, entonces:

bn − bn+1 ≥ 0 (1)

Sin pérdida de generalidad asumamos que an = (−1)n+1bn. Ahora, veamos cómo se comportan las sumas
parciales pares:

S2k =

2k∑
n=1

(−1)n+1bn =

2k−2∑
n=1

(−1)n+1bn + b2k−1 − b2k = S2k−2 + b2k−1 − b2k (2)

Como b2k−1 − b2k ≥ 0, entonces S2k ≥ S2k−2. Por lo tanto, la sucesión de las sumas parciales pares, es decir,
{S2k}, es creciente. Pero también, podemos escribir S2k como:

S2k =

2k∑
n=1

(−1)n+1bn = b1 −
k−1∑
n=1

(b2n − b2n+1)− b2k (3)

Como b2n − b2n+1 ≥ 0 y b2k ≥ 0, entonces S2k ≤ b1 para toda k ∈ N. También, como {S2k} es creciente y
acabamos de ver que está acotada por arriba, entonces {S2k} converge. Supongamos que converge a L, es
decir:

ĺım
k→∞

S2k = L (4)
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Ahora, determinemos el ĺımite de la sucesión de las sumas parciales impares, es decir, de {S2k−1}:

ĺım
k→∞

S2k−1 = ĺım
k→∞

(S2k − b2k−1) = ĺım
k→∞

S2k − ĺım
k→∞

b2k−1 = L− 0 = L (5)

Aśı, {S2k−1} también converge. Finalmente, como ambas convergen al mismo ĺımite L, la sucesión {Sk} debe

converger también a L, por lo tanto,

∞∑
n=1

an converge.

Una observación es que este criterio solo sirve para demostrar convergencia, es decir, si alguna de las
dos condiciones no se cumple sobre la serie alternante, no podemos concluir nada y será necesario usar otro
criterio.

2. Convergencia absoluta

Definición 2.1. Sea {an} una sucesión:

Decimos que la serie

∞∑
n=1

an es absolutamente convergente si la serie

∞∑
n=1

|an| converge.

Si la serie

∞∑
n=1

an converge pero la serie

∞∑
n=1

|an| diverge, decimos que la serie es condicionalmente

convergente.

Teorema 2.2. Si

∞∑
n=1

an es absolutamente convergente, entonces también es convergente.

Demostración. Supongamos que

∞∑
n=1

an es absolutamente convergente, es decir, supongamos que

∞∑
n=1

|an|

converge. Vemos que |an| puede ser an o −an dependiendo de su signo, aśı, tenemos la siguiente desigualdad:

0 ≤ an + |an| ≤ 2 |an| (6)

Ahora, como

∞∑
n=1

|an| converge, entonces

∞∑
n=1

2 |an| también converge, ya que solo estamos multiplicando por

2 la serie. Sin embargo, usando la desigualdad (??) y el criterio de comparación directa, vemos que la serie
∞∑

n=1

(an + |an|) converge. Finalmente, tenemos que la serie original es:

∞∑
n=1

an =

∞∑
n=1

(an + |an| − |an|) =

∞∑
n=1

(an + |an|)−
∞∑

n=1

|an| (7)

Ya que logramos expresarla como la diferencia de dos series convergentes, concluimos que

∞∑
n=1

an converge.

El teorema anterior es muy útil, ya que garantiza que una serie absolutamente convergente es convergente.
Sin embargo, su rećıproco no es necesariamente cierto: las series que son convergentes pueden o no ser

absolutamente convergentes. El ejemplo más famoso es la serie cuyo n-ésimo término es an =
(−1)n−1

n
, ya

que

∞∑
n=1

an converge por el teorema anterior, pero

∞∑
n=1

|an| =
∞∑

n=1

1

n
diverge por el criterio de las series p.
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3. Explicación

3.1. ¿Series Alternantes?

Si tu como yo no entendiste que dećıa antes. No te preocupes para eso estamos aqúı.

Tenemos entonces una sucesión, la cual denotaremos an

Donde n es el numero del termino (como en un Array :) )

Estas series tienen esta forma:

−a1 + a2 − a3 + a4...

ó

+a1 − a2 + a3 − a4...
O sea, alternan el signo...(No te esperabas eso). Entonces las podemos escribir como una serie infinita

donde n va desde 1 hasta ∞.

Esta empieza con negativo

∞∑
n=1

(−1)nbn

ó

Esta empieza con positivo.

∞∑
n=1

(−1)n+1bn

Arriba nos dice que bn ≥ 0, eso sirve para que el −1 tenga el poder de elegir el signo.

Y como todos sabemos cuando n es par no cambia de signo y cuando es impar si cambia, y esa es la magia
de estas series.

3.1.1. ¿Convergen?

Para nuestra fortuna alguien más ya estudió esto y nos dijo que convergen si se cumplen 2 cosas.

Advertencia: No usen estas reglas para probar divergencia. Solo se aplican para probar convergencia

ESCOM-IPN 3
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Pasos para probar convergencia

Paso 1:¿Recuerdan ese bn? Apliquen limite.

ĺım
n→∞

bn

Si el limite es cero procedan al siguiente paso, si no break;

Paso 2: bn es decreciente. Osea

bn − bn+1 ≥ 0

¿Terminaste el proceso? Es convergente.

3.2. Ejemplos 1

Ejemplo 3.1. Una sencilla para encaminarnos:
∞∑

n=1

(−1)n+1 1

n

Paso 1: Limite

ĺım
n→∞

1

n
= 0

Paso 2: ¿Es Decreciente?

¿
1

n
− 1

n+ 1
≥ 0?

Como es verdadero entonces esta suma es convergente.

Ejemplo 3.2. Una más
∞∑

n=1

(−1)n+1n+ 2

n+ 1

ESCOM-IPN 4



Convergencia absoluta y series alternantes 5

Paso 1: Limite

ĺım
n→∞

n+ 2

n+ 1
= 1

Recuerda que como el limite es distinto de 0 ya no converge.

Break;

Continua solo por gusto :)

Paso 2: ¿Es Decreciente?

¿
n+ 2

n+ 1
− (n+ 1) + 2

(n+ 1) + 1
≥ 0?

n+ 2

n+ 1
≥ n+ 3

n+ 2

(n+ 2)(n+ 1) ≥ (n+ 3)(n+ 1)

n2 + 4n+ 4 ≥ n2 + 4n+ 3

4− 3 ≥ 0

Es verdadero pero como el primer criterio no se cumplió, no podemos concluir nada.

3.3. ¿Convergencia Absoluta?

Resulta que nuestra serie tiene un gemelo, y no sabemos si es malvado o no. Para saber si es malvado
tomamos nuestra serie y le colocamos un valor absoluto. Es bueno si converge. Es malvado si la serie no
converge.

Malvado= Converge condicionalmente

Bueno= Converge absolutamente

¿Cómo determinar si el gemelo es malvado?

Paso 1: ¿La serie converge? Si no es cierto break;

Paso 2: Agrega el valor absoluto Y ve si converge. Si converge es Bueno Si no llegas a acabar es malvado.

3.4. Ejemplos 2

Ejemplo 3.3.

∞∑
n=1

(−1)n+1

n

Paso 1: Convergencia en la serie.

La serie converge como vimos arriba.

Paso 2: Aplicamos el valor absoluto
∞∑

n=1

∣∣∣∣ (−1)n+1

n

∣∣∣∣
∞∑

n=1

1

n

Malvada

Esta suma diverge por el criterio de las series p, por lo cual la serie converge condicionalmente.

ESCOM-IPN 5
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Ejemplo 3.4. Otro
∞∑

n=1

(−1)ne−n
2

Paso 1: Esta vez saltemos al paso 2

Paso 2: Aplicamos el valor absoluto
∞∑

n=1

∣∣∣(−1)ne−n
2
∣∣∣

∞∑
n=1

1

en2

Usando el criterio de comparación usamos la serie:
∞∑

n=1

1

2n
La cual converge

y comparando

¿
1

en2 <
1

2n
?

Buena

Es verdadero entonces la serie original converge absolutamente.

Y me preguntarás ¿Por qué? El Teorema 2.2 dice que si la serie con el absoluto converge,
entonces la serie original alternante converge también. Cool.

4. Ejercicios

Ejercicio 4.1. Sea an =
(−1)n

√
n

n+ 4
. Demuestra que

∞∑
n=1

an converge.

ESCOM-IPN 6
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Ejercicio 4.2. Sea an =
cos(πn)√

n
. Demuestra que

∞∑
n=1

an es una serie alternante y que converge.

Ejercicio 4.3. Determina si la serie

∞∑
n=1

(−1)n

n2
es absolutamente convergente, condicionalmente convergente

o divergente.

Ejercicio 4.4. Determina si la serie

∞∑
n=1

sinn

n3
es absolutamente convergente, condicionalmente convergente

o divergente.

Ejercicio 4.5. Demuestra que la serie
1

1 · 2
+

1

3 · 4
+

1

5 · 6
+ · · · =

∞∑
n=1

1

(2n− 1)(2n)
es alternante, converge

y es condicionalmente convergente.

5. Soluciones

5.1. Problema 1

Tenemos que:

ĺım
n→∞

√
n

n+ 4
= ĺım

n→∞

√
n

(n+ 4)2
= 0

También:

n

n+ 4
≥
√
n+ 1

n+ 5

n(n+ 5)2 ≥ (n+ 1)(n+ 4)2

n3 + 10n2 + 25n ≥ n3 + 9n2 + 24n+ 16

n2 + n ≥ 16

Eso quiere decir que la sucesión comenzará a decrecer desde n ≥ 4, por lo que
n

n+ 4
≥
√
n+ 1

n+ 5
se

cumple.

Por lo tanto, la serie

∞∑
n=1

(−1)n
√
n

n+ 4
converge.

5.2. Problema 2

Recordemos la identidad trigonométrica cos(πn) = (−1)n para toda n ∈ Z, entonces la serie es simple-

mente

∞∑
n=1

(−1)n

n2
, donde se ve claramente que es alternante.

Tenemos que:

ĺım
n→∞

1

n2
= 0

ESCOM-IPN 7
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También:

1

n2
≥ 1

(n+ 1)2

(n+ 1)2 ≥ n2

2n+ 1 ≥ 0

Debido a que 2n+ 1 ≥ 0 para toda n ≥ 1, se cumple que
1

n2
≥ 1

(n+ 1)2
.

Por lo tanto, la serie

∞∑
n=1

cos(πn)

n2
converge.

5.3. Problema 3

Tenemos que la serie formada por los valores absolutos de los términos es

∞∑
n=1

1

n2
, y por el criterio de las

series p, converge. Por lo tanto, la serie original es absolutamente convergente.

5.4. Problema 4

Tenemos que la serie formada por los valores absolutos de los términos es

∞∑
n=1

|sinn|
n3

. También, sabemos

que |sinn| ≤ 1, entonces
|sinn|
n3

≤ 1

n3
. Sabemos que la serie

∞∑
n=1

1

n3
converge por el criterio de las series p,

entonces, usando el criterio de comparación directa, la serie

∞∑
n=1

|sinn|
n3

también converge. Por lo tanto, la

serie original es absolutamente convergente.

5.5. Problema 5

Notemos que
1

(2n− 1)(2n)
=

1

2n− 1
− 1

2n
, por lo que la serie en realidad es

∞∑
n=1

(
1

2n− 1
− 1

2n

)
=

1

1
− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · =

∞∑
n=1

(−1)n−1

n
, donde se ve claramente que es alternante. Y como vimos en los

ejemplos 3.1 y 3.3, esta serie converge y es condicionalmente convergente.

ESCOM-IPN 8


